847 research outputs found

    Different Melting Behavior in Pentane and Heptane Monolayers on Graphite; Molecular Dynamics Simulations

    Full text link
    Molecular dynamics simulations are utilized to study the melting transition in pentane (C5H12) and heptane (C7H16), physisorbed onto the basal plane of graphite at near-monolayer coverages. Through use of the newest, optimized version of the anisotropic united-atom model (AUA4) to simulate both systems at two separate coverages, this study provides evidence that the melting transition for pentane and heptane monolayers are significantly different. Specifically, this study proposes a very rapid transition from the solid crystalline rectangular-centered (RC) phase to a fluid phase in pentane monolayers, whereas heptane monolayers exhibit a slower transition that involves a more gradual loss of RC order in the solid-fluid phase transition. Through a study of the melting behavior, encompassing variations where the formation of gauche defects in the alkyl chains are eliminated, this study proposes that this gradual melting behavior for heptane monolayers is a result of less orientational mobility of the heptane molecules in the solid RC phase, as compared to the pentane molecules. This idea is supported through a study of a nonane monolayer, which gives the gradual melting signature that heptane monolayers also seem to indicate. The results of this work are compared to previous experiment over pentane and heptane monolayers, and are found to be in good agreement

    A mechanism for unipolar resistance switching in oxide non-volatile memory devices

    Full text link
    Building on a recently introduced model for non-volatile resistive switching, we propose a mechanism for unipolar resistance switching in metal-insulator-metal sandwich structures. The commutation from the high to low resistance state and back can be achieved with successive voltage sweeps of the same polarity. Electronic correlation effects at the metal-insulator interface are found to play a key role to produce a resistive commutation effect in qualitative agreement with recent experimental reports on binary transition metal oxide based sandwich structures.Comment: 4 pages, 2 figure

    Nonpolar resistance switching of metal/binary-transition-metal oxides/metal sandwiches: homogeneous/inhomogeneous transition of current distribution

    Full text link
    Exotic features of a metal/oxide/metal (MOM) sandwich, which will be the basis for a drastically innovative nonvolatile memory device, is brought to light from a physical point of view. Here the insulator is one of the ubiquitous and classic binary-transition-metal oxides (TMO), such as Fe2O3, NiO, and CoO. The sandwich exhibits a resistance that reversibly switches between two states: one is a highly resistive off-state and the other is a conductive on-state. Several distinct features were universally observed in these binary TMO sandwiches: namely, nonpolar switching, non-volatile threshold switching, and current--voltage duality. From the systematic sample-size dependence of the resistance in on- and off-states, we conclude that the resistance switching is due to the homogeneous/inhomogeneous transition of the current distribution at the interface.Comment: 7 pages, 5 figures, REVTeX4, submitted to Phys. Rev. B (Feb. 23, 2007). If you can't download a PDF file of this manscript, an alternative one can be found on the author's website: http://staff.aist.go.jp/i.inoue

    Field Measurements of a Diaphragm Wall Foundation

    Get PDF
    Field measurements of a small-sectioned diaphragm wall foundation for a highway bridge have been performed to understand the stability of the trench wall during construction. In this paper, a case history on the field measurements of the diaphragm wall foundation during deep trench excavation is presented

    Inhibition of Casein Kinase 2 Modulates XBP1-GRP78 Arm of Unfolded Protein Responses in Cultured Glial Cells

    Get PDF
    Stress signals cause abnormal proteins to accumulate in the endoplasmic reticulum (ER). Such stress is known as ER stress, which has been suggested to be involved in neurodegenerative diseases, diabetes, obesity and cancer. ER stress activates the unfolded protein response (UPR) to reduce levels of abnormal proteins by inducing the production of chaperon proteins such as GRP78, and to attenuate translation through the phosphorylation of eIF2α. However, excessive stress leads to apoptosis by generating transcription factors such as CHOP. Casein kinase 2 (CK2) is a serine/threonine kinase involved in regulating neoplasia, cell survival and viral infections. In the present study, we investigated a possible linkage between CK2 and ER stress using mouse primary cultured glial cells. 4,5,6,7-tetrabromobenzotriazole (TBB), a CK2-specific inhibitor, attenuated ER stress-induced XBP-1 splicing and subsequent induction of GRP78 expression, but was ineffective against ER stress-induced eIF2α phosphorylation and CHOP expression. Similar results were obtained when endogenous CK2 expression was knocked-down by siRNA. Immunohistochemical analysis suggested that CK2 was present at the ER. These results indicate CK2 to be linked with UPR and to resist ER stress by activating the XBP-1-GRP78 arm of UPR
    • …
    corecore